
Abstract. The memory retrieval process of number
problems with external noise is studied with the use of
the Bonhoeffer–van der Pol oscillator model. Three cell
assembly responses are simulated, coding one true
number and two neighboring erroneous. The time of a
correct response, Tc, was averaged over statistical
assemblies of numerous trials. It is demonstrated that
Tc takes a minimum value for a certain noise intensity.
This result correlates well with experimental data by
Usher and Feingold (2000). The location of the mini-
mum as a function of the time delay between two
consecutive simulation trials is investigated.

Usher and Feingold (2000) showed experimentally
that the speed of memory retrieval depends on external
noise nonmonotonically: it is minimal for a certain value
of noise intensity. The authors called this phenomenon
stochastic resonance.1 Usher and Feingold (2000) mea-
sured the mean time T of the response of 19 participants
to the task of memory retrieval for single-digit arith-
metical multiplications at six levels of external noise and
determined that it had a minimum. The measure-
ments were taken in such a way that participants were
prompted by the software to make a new response if
they produced an error until the correct response was
produced.

For an explanation of the experimental results Usher
and Feingold (2000) suggested a random-walk-type
model with an artificial response criterion to determine
response time (RT). We suggest a biologically oriented
model for the following reason.

Higher brain functions are thought to be based on
processing units called cell assemblies. Cell assemblies
consist of large groups of neurons with strong reciprocal
internal connections and form a randomly coupled

neuronal network where certain sets of neurons simul-
taneously become active so that their connections be-
come increasing stronger (so-called Hebb’s law) (Hebb
1949; Gustafson et al. 1987; Bonhoeffer et al. 1989;
Ahissar and Vaadia 1990). Due to strong intraassembly
connections, the activation of a certain amount of neu-
rons of an assembly results in the spreading of activation
in the local network and, finally, to the ignition of the
whole assembly. A special regulatory mechanism guar-
antees that only one or a limited number of assemblies
will ignite simultaneously (Braitenberg 1978). If a cell
assembly has strong internal connections, its ignition
will occur instantaneously so that all or at least many
neurons of this assembly become active almost concur-
rently. The question is how quickly the activity will
spread through the assembly. We consider only fast and
slow modes of the activation of all neurons. In the fast
mode, after activation of a neuron subset of an assem-
bly, almost all its remaining neurons can be activated
synchronously because of a low threshold of activation
of all neurons in the network. The low threshold means
that a certain neuron can be activated under the action
of a very small amount of previously activated neurons.
If the activation threshold is high (i.e., when large
amounts of previously activated neurons are necessary
to activate a certain neuron), a ‘‘stepwise’’ mode of
activation will be realized. This means that the activity
spreads from one set of neurons to the next only after all
neurons of the previous sets have been activated. Obvi-
ously, in the ‘‘stepwise’’ mode, much more time is
required to activate a whole neuron assembly.

It is known (Lopes da Silva et al. 1997; Nishida et al.
1997) that each neuron has two kinds of inputs: infor-
mational input, i.e., neural code for specific informa-
tional operations, and irrelevant input, or arousal, which
keeps neurons at the appropriated level of excitability.
The latter is the slightly correlated noise of the neuron
network, which is similar to thermal noise. It is possible
that the brain uses this inevitable noise as an energy
factor that takes part in the regulation of excitability of
neurons. It can be inferred that the level of neural noise
depends on the general level of neuronal activity, which
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is determined by internal and external (sensory) events
irrelevant to the basic task. Thus in general, the higher
noise level, the higher excitability of neurons and the
shorter the period of activation of a whole assembly.

It should be noted that external noise makes a partial
contribution to neuronal noise. But how does the level of
external noise influence the elements of cognitive activ-
ity, for example, in recognizing certain symbols, num-
bers, letters, etc.? For example, if we intend to think
about some symbol, e.g., test number ‘‘31,’’ this number
must be coded in brain by activation of a specific neuron
assembly. We will call this assembly memory item 31. To
recall the number 31, i.e., to retrieve it, it is necessary to
activate memory item 31 again. This activation should
occur through corresponding ‘‘informational’’ input in
response to the presented number 31. The faster the
activation of the memory item occurs, the shorter the
period of number recognition.

It should be noted that some neurons within the cell
assembly of memory item 31 can be initially activated by
the presentation of an ‘‘error’’ symbol that is graphically
similar to the true one, e.g., the number ‘‘34’’ or ‘‘81.’’
As a result, either total activation of the memory item 31
will be delayed or no activation will occur. In the former
case, the number 34 or 81 will be falsely recognized as
31, whereas in the latter case, the response will be cor-
rect.

But what happens if, in addition to the information
input, the noise input is present? It is possible that in the
absence of this input the threshold of activation of dif-
ferent memory items may be sufficiently high, so that the
signal coming in through an information input is insuf-
ficient for the activation of the corresponding memory
item. In this case, the presence of noise, supplying
additional spikes and thereby lowering the activation
threshold, causes the increase in the probability of the
recognition of the required symbol. At the same time,
the increase of the noise intensity can bring into opera-
tion the erroneous identification of symbols similar to
the required one.

To explain errors it is necessary to consider the joint
operation of the whole pool of memory items coding
similar symbols, i.e., 31, 34, and 81. Assume the input is
31; as the noise intensity increases, the probability of the
activation of memory items 34 and 81 increases too
because the spike flow from the noise input is added to
the spikes of the informational inputs partially activated
by symbol 31 that correspond to memory items 34 and
81. This results in the increase of the errors caused by the
erroneous recognition of the true symbol (31) as a false
one (i.e., 34 or 81).

Thus, to explain the observed features of the memory
retrieval process with external noise it is necessary to
simulate at least three cell assemblies, coding one true
number and two graphically similar to it. For the sake of
simplicity, we will assume that each of these assemblies
functions like one neuron. This assumption can be
justified by the fact that neurons comprising the assembly
are well synchronized. One model of neuron activation
was suggested by Bonhoeffer (Bonhoeffer 1941;
Bonhoeffer 1948; Bonhoeffer and Langhammer 1948;

Bonhoeffer 1953) and became known as the Bonhoeffer–
van der Pol oscillator (Landa 1996). This model describes
oscillations of voltage across the neural membrane
taking into account refractoriness. The equations that we
simulated describe three coupled Bonhoeffer–van der Pol
oscillators with noise sources. They are

_xx1 ¼ x1 �
x31
3
� y1 þ I1 þ n1ðtÞ; _yy1 ¼ cðx1 þ a� by1Þ

_xx2 ¼ x2 �
x32
3
� y2 þ I2 þ n2ðtÞ; _yy1 ¼ cðx2 þ a� by2Þ

_xx3 ¼ x3 �
x33
3
� y3 þ I3 þ n3ðtÞ; _yy3 ¼ cðx3 þ a� by3Þ

ð1Þ

where a ¼ 0:7; b ¼ 0:8, and c ¼ 0:1 are parameters
assumed to be the same for all oscillators, I1;2;3 are the
informational inputs that must be different for the
oscillator responsible for the correct response and
the oscillators responsible for false responses, and
n1ðtÞ; n2ðtÞ; n3ðtÞ are independent white noises assumed
to have the same intensity j for all oscillators. We
designate the first oscillator to be responsible for the
correct response and set I1 ¼ 0:3 and I2 ¼ I3 ¼ 0:15.

In the absence of noise, each of the oscillators is in its
equilibrium state because the excitation threshold is
equal to I0 � 0:341, i.e., it is greater than I1; I2, and I3.
The presence of a small noise results in the appearance
of probabilities of excitation of any of these oscillators,
but the probability of excitation of the first oscillator,
even if very small, is higher than that of the other two.
This probability increases with increasing noise inten-
sity, i.e., the mean time of the excitation of the first
oscillator decreases rapidly. At the same time, the
probabilities of excitation of the two other oscillators
grow too, resulting in an increase in the number of
errors.

Just as in Usher and Feingold (2000), we took for the
time of a correct response T the total time required for
the first oscillator to be excited before the others,
assuming that if an error occurs, a new response is re-
quired until a correct response is produced. To find T ,
for each value of the noise intensity j (j is determined by
the formula hn1;2;3ðtÞn1;2;3ðt þ sÞi ¼ jdðsÞ), we performed

Fig. 1. The plot of Tc vs. j for T0 ¼ 15 (curve 1) and T0 ¼ 30 (curve 2)
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a set of simulation trials until the oscillator responsible
for the correct response was excited. If this occurred in
the first simulation trial, the corresponding set consisted
of a single element and T ¼ T1; otherwise, it consisted of
a greater number of elements. Repeating these sets of
simulation trials, we obtain a statistical ensemble of the
values of T and can average T over this ensemble. Thus,
the formula that we used for calculation of the mean
time of a correct response Tc is

TcðjÞ ¼ hT i ¼
D

T1 þ T2 þ T3 þ � � � þ Tk þ ðk � 1ÞT0

E

ð2Þ

where Ti (i ¼ 1 . . . k) is the excitation time of any
oscillator in the ith simulation trial, k is the number of
trials required for a correct response, T0 is the time delay
between the ith and iþ 1-th simulation trials, and angle
brackets mean the average operation over the sets of
trials. The results are presented in Fig. 1 for two values
of T0. It is seen that Tc does have a minimum for a
certain value of noise intensity. As T0 increases, this
minimum is somewhat shifted in the direction of smaller
values of j.

It should be noted that similar results can be obtained
using a simpler model of two Bonhoeffer–van der Pol
oscillators with different excitation thresholds (the
oscillator with the smaller threshold (first) is assumed to
be responsible for a correct response, and the oscillator
with the larger threshold (second) is assumed to be
responsible for a false response). As before, we set
I0 ¼ 0:3 (x0 � �0:9933) for the first oscillator and
I0 ¼ 0:15 (x0 � �1:10432) for the second one. We sup-
pose that the response is correct if the first oscillator is
excited first and calculate the ratio of the mean time of a
correct response Tc to n, where n is equal to twice the
difference between the relative number of the correct
responses nc and 1/2.2 The dependence of this ratio on
the noise intensity is illustrated in Fig. 2a. We see that
this dependence has a minimum. The presence of the
minimum can be explained as follows. In accordance
with the general theory (Landa and Stratonovich, 1962),
as the noise intensity increases, the mean time of the
excitation of the first oscillator (as well as the second)

decreases monotonically (Fig. 2b). At the same time, the
probability for the second oscillator to be excited
first increases, i.e., the relative number of the correct
responses decreases. If the latter decreases more rapidly
than the former, the minimum appears.

Thus, we have shown that the experimental results by
Usher and Feingold (2000) concerning the nonmonotone
dependence of the speed of memory retrieval on external
noise intensity can be explained in the framework of a
more biological model as compared to what has been
suggested in Usher and Feingold (2000). The reason for
this nonmonotony lies, on the one hand, in the decrease
of the threshold of activation of the neuron assembly
responsible for the memory retrieval of some symbol,
and, on the other hand, in the increase of the number of
errors with increasing noise intensity.
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