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Abstract

Averaging (in statistical terms, estimation of the location of data) is one of the

most commonly used procedures in neuroscience and the basic procedure for ob-

taining event-related potentials (ERP). Only the arithmetic mean is routinely used

in the current practice of ERP research, though its sensitivity to outliers is well-

known. Weighted averaging is sometimes used as a more robust procedure, however,

it can be not sufficiently appropriate when the signal is nonstationary within a trial.

Trimmed estimators provide an alternative way to average data. In this paper, a

number of such location estimators (trimmed mean, Winsorized mean and recently

introduced trimmed L–mean) are reviewed, as well as arithmetic mean and median.

A new robust location estimator tanh, which allows the data–dependent optimiza-

tion, is proposed for averaging of small number of trials. The possibilities to improve

signal-to-noise ratio (SNR) of averaged waveforms using trimmed location estima-

tors are demonstrated for epochs randomly drawn from a set of real auditory evoked

potential data.
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1 Introduction

Averaging is probably the most common basic statistical procedure in experi-

mental science. It is used for estimating the location of data (or “central ten-

dency”) in the presence of random variations among the observations, which

can be removed by this procedure. Data variations can be the result of varia-

tions in the phenomenon of interest or of some unavoidable measuring errors.

In signal processing terms, this can be considered as contamination of useful

“signal”, such as event–related brain activity, by useless “noise”, such as ar-

tifacts and ongoing activity, both not repeatedly associated with the event.

In the case of linear summation of signal and noise (“additive model”), the

fact that only the event–related signal is time–locked to the event and noise

is not time–locked, allows the cancellation of the noise by averaging the data

separately for each time point relative to the event. Averaging is typically

done using arithmetic mean, which is the most widely known estimator of the

location of the data.

Event–related averaging is important for various techniques from single neu-

ron firing recording to optical imaging, but is most essential for the old and
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still important technique of event–related potentials (ERP). ERPs are voltage

fluctuations repeatedly associated in time with some physical or mental events,

which can be extracted from the ongoing electroencephalogram (EEG) using

signal averaging (Picton et al., 2000). The term “evoked potentials” (EPs)

is used for an important subset of ERPs which are “evoked” by a certain

event, usually a sensory one, but not by independent endogenous processes.

Additive model is most commonly accepted for event-related activity and on-

going EEG, allowing the use of averaging for the extraction of ERP. Though

a number of studies cast doubts on the additive model by demonstrating that

event–related modifications of the ongoing EEG may also contribute to ERP

(Makeig et al., 2002; Jansen et al., 2003), averaging has been proved to be

practically a very efficient procedure and is used, therefore, as the basic pro-

cedure in ERP analysis (Picton et al., 1995; Lopes da Silva, 1999; Picton et

al., 2000).

Temporal resolution in the order of milliseconds makes ERPs an important

tool for estimating of the timing for information processing in the human

brain (Picton et al., 2000). Thus, the improvement of signal–to–noise ratio

by averaging, which is the essence of computing the ERP, should receive a

serious attention. In particular, an important task is the development of ef-

ficient methods for averaging of small sets of single–trial ERPs, where data

may strongly deviate from Gaussian distribution. Due to deviation from Gaus-

sian distribution, their location may not be estimated correctly by arithmetic

mean. The number of data epochs (which correspond to experimental trials)

used for averaging should be as low as possible because of various reasons:

fatigue, learning and other factors affecting the brain response of the subject;

even the way the subjects perform the task may change if the task is repeated
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many times. In some applications such as Brain–Computer Interface (BCI)

only a few trials can usually be used each time the averaging is computed

(Wolpaw et al., 2002).

In some cases the improvement of ERP averaging can be obtained with vari-

ous techniques which compensate for the trial–to–trial variability, mainly the

latency jitter. Such approaches, however, require that the ERP could be recog-

nizable in single trials, which is often impossible, and involve the risk that the

outcome can be merely the result of lining up the background noise (Picton

et al., 1995, 2000).

Improving the noise reduction by averaging can be obtained with a technique

called weighted averaging. In this method, each epoch is given a weight de-

pending on estimated noise in this epoch (Hoke et al., 1984; Lütkenhöner et

al., 1985; Davila and Mobin, 1992;  Lȩski, 2002). Though quite many varia-

tions of weighting averaging have been developed (for review see, e.g.,  Lȩski

(2002)), this method is still rarely used for averaging of ERP. As stated in

Özdamar and Kalayci (1999), there are still unsolved issues related to compu-

tation of weights and their influence on the result of averaging. An important

limitation of weighted averaging comes from the noise model which it assumes.

According to this model, noise varies between epochs, but is stationary within

each epoch (Lütkenhöner et al., 1985). However, many types of noise (not only

artifacts but also waves of ongoing EEG) can strongly vary within an epoch,

having high amplitude in some time points and low amplitudes in other ones.

Thus, the weights can be underestimated for the part of epoch where a strong

noise occurs and overestimated for another part of epoch where the noise is

low.
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Median averaging is another approach suggested for minimizing the influence

of noise in ERPs (Borda and Frost, 1968; Yabe et al., 1993; Picton et al., 1995;

Özdamar and Kalayci, 1999; Fox and Dalebout, 2002). It is similar to conven-

tional averaging on the basis of arithmetic mean, with only difference that

median is used instead of mean. Computation of median includes ordering of

samples according to their amplitudes of all epochs for each time point relative

to stimulus, independently from other time points. Due to this independence,

median averaging cannot be affected by the nonstationarity of noise within an

epoch. It was shown that median averaging can improve averaging of endoge-

nous ERPs using small number of trials (Yabe et al., 1993). A detailed study

by Özdamar and Kalayci (1999) demonstrated the advantages of median av-

eraging over conventional averaging for auditory brain stem responses which

have low SNR due to very low amplitude and thus requires high number of

epochs to be averaged.

The disadvantage of median averaging is that it does not only remove the

outliers but also uses the rest of data only in the sense of the order of the val-

ues. It is evident that some useful information can be lost by this procedure,

comparing to conventional averaging, which employs the data values them-

selves instead of their order. In practice, median averaged waveforms include

a rather strong high frequency noise (though it seems to be easily removable

by filtering (Özdamar and Kalayci, 1999)), and the results are not always

improved relative to conventional mean averaging (Fox and Dalebout, 2002).

One should also consider a possibility of unpredictable effects arising from

the “over–robustness” of median. For example, the value of median will not

change at all if we add a very large value to each of data values above median

(Streiner, 2000).
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Is it possible to combine advantages of mean and median averaging? In fact,

an estimator of data location which lies between those two extremes already

exists and its name is “trimmed mean”. In this method (see the exact definition

in the next section), a part of extreme values is discarded or modified, but all

other values are used for averaging in the same way as in conventional mean

averaging.

It is important to note that rejection of extreme values is quite different from

the procedure of artifact rejection. The latter procedure typically implies re-

moving not only extreme values but all trials including extreme values or some

other signs of artifacts and in this sense it is closer to weighted averaging, which

defines the impact of an epoch by estimating it as a whole. Surprisingly, though

trimmed mean and its modified version, Winsorized mean, are efficient robust

location estimators (Stuart, 1994), averaging of ERPs on the basis of these

estimators has never been reported, to the best of our knowledge.

The goal of this paper is to demonstrate the efficiency of trimmed estimators

of data location for computing ERPs and to propose some ways to optimize

their parameters, such as trimming parameters and parameters for weights

related to order of averaged amplitudes.

In this paper, we:

(1) briefly review a number of locator estimators, namely mean, median, and

three trimmed estimators: trimmed mean, Winsorized mean and recently

proposed trimmed L–mean,

(2) report results of their testing using real auditory evoked potential (AEP)

data and their resampling,

(3) propose a new adaptable location estimator.
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2 Statistical estimators of location

2.1 Problem of robustness of estimation of the data location

The problem of sensitivity of an estimator to the presence of outliers, i.e. “the

data points that deviate from the pattern set by the majority of the data

set” (Hampel et al., 1986), has lead to the development of robust location

measures. Robustness of an estimator is measured by the breakdown value,

which tells us how many data points need to be replaced by arbitrary values

in order to make the estimator explode (tend to infinity) or implode (tend to

zero). For instance: arithmetic mean has 0% breakdown whilst median is very

robust with breakdown value of 50% (Hampel et al., 1986).

2.2 Arithmetic mean

The most widely used statistical measure and the best known estimator of

location is the arithmetic mean (see Figure 1(a)).

µmean =
N

∑

i=1

1

N
xi (1)

The arithmetic mean is a standard location estimator used for averaging of

ERPs and for many other purposes, however, it is not robust. In the case of

arithmetic mean, only one outlier may make the estimate infinitely large or

small. The breakdown value becomes here lim
N→∞

1

N
= 0.

7



2.3 Robust location measures

Many location estimators can be presented in unified way by ordering the

values of the sample as x(1) ≤ x(2) ≤ ... ≤ x(N) and then applying the weight

function wi (Stuart, 1994)

µr =
N

∑

i=1

wix(i), (2)

where wi is a function designed specifically to reduce the influence of certain

observations (data points) in form of weighting and x(i) represents the ordered

data. For the arithmetic mean it holds wi = 1
N

.

To make the comparison between different estimators easier, we present all

weighting functions (as in (2)) plotted in Figure 1.

2.4 Median

Suppose that the data have the size of (2M +1), where M is a positive integer,

then the median is the value of the (M + 1)th ordered observation. In the case

of even data size 2M the median is defined as the value of the mean of the

samples M and M + 1. According to the framework of equation (2) the weight

one is applied to the (M +1)th sample in the case when the number of samples

is odd and weights equal to 1
2

to both M th and (M + 1)th samples when the

number of samples is even (Stuart, 1994) (see Figure 1(b)).
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2.5 Trimmed mean

For the α–trimmed mean (where p = αN) the weights wi as in (2) can be

defined as:

wi =























1
N−2p

, p + 1 ≤ i ≤ N − p

0, otherwise

(3)

Thus, the trimmed mean correspond to the mean value of data samples where

p highest and p lowest samples are removed (see Figure 1(c)).

Application of trimming lowers the influence of extreme data values on the

result of averaging. However, unlike in median, substantial part of data can

be included into average.

2.6 Winsorized mean

In the case of trimmed mean, the tails of the distribution of the data are simply

ignored. It can lead to the loss of information and should be avoided when

the sample size is small. Winsorized mean is similar to trimmed mean with

the exception that it replaces each observation in each α fraction (p = αN) of

the tail of the distribution by the value of the nearest unaffected observation.

Weight wi becomes here (see Figure 1(d))

wi =







































0, i ≤ p or i ≥ N − (p − 1)

p+1
N

, i = p + 1 or i = N − p

1
N

, p + 2 ≤ i ≤ N − (p + 1)

(4)

Usually, the values in the range 0 ≤ p ≤ 0.25N are considered, depending on

the heaviness of the tails of the distribution.
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An interesting observation is that the median can be viewed as an extreme

case of the trimmed mean or Winsorized mean when only one or two central

data points are retained (Stuart, 1994).

2.7 Trimmed L–mean (TL–mean)

Recently, Elamir and Seheult (2003) proposed the trimmed L–moments (TL–

moments) as a generalization of L–moments (Hosking, 1990). The TL–mean

can be estimated from a sample as a linear combination of order statistics.

Using the formulation of equation (2) the weight function can be calculated

as follows (p = 0 for arithmetic mean)

wi =























(i−1

p )(N−i

p )
( N

2p+1)
, p + 1 ≤ i ≤ N − p

0, otherwise,

(5)

where
(

i

p

)

= i!
p!(i−p)!

. Equation (5) reveals the connection between the TL–mean

and the trimmed mean. In the calculation of the both statistics, the extreme

observations are ignored. The main difference is that the trimmed mean applies

the equal weight to the remaining observations whereas the TL–mean uses

higher weights for the observations near the median (see Figure 1(e)). The

variance of various location estimators was compared in Elamir and Seheult

(2003) for samples originating from normal, logistic, double–exponential and

normal distribution with outliers. The conclusions of this simulations are that

TL–mean is suitable for general use and performs reasonably well for normal

and heavy–tailed distributions. Such information is not precise enough for the

purpose of averaging of ERPs and further investigations are necessary.
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2.8 New empirical estimator: tanh mean

We propose a new estimator to alleviate the problem of enhancing noise by

robust estimators such as trimmed mean or median. The weights are calculated

using the hyperbolic tangent functions (see Figure 1(f)) in such way that the

signal samples are weighted by

wi =























tanh[k(i)] − s, i < N

2

− tanh[k( i
2
− N)] + s, i ≥ N

2

(6)

where k is the factor controlling the slope of the weights for extreme values in

data and s determines the vertical shift. The robustness is achieved by setting

all weights with negative values to zero so the extreme observations will be

ignored, like for trimmed mean, Winsorized mean or TL-mean. Such formu-

lation allows the control over the robustness (cancelling of extreme values)

and over the influence of extreme values on the final estimate of the averaged

trial. The shape of the weighting function depends on parameters k and s.

This estimator belongs to the group of trimmed estimators by its ability to

cancel of extreme values. However, its main feature is a flexible and optimized

adjusting of the degree of influence of the values close to the extremes on the

result of averaging.

Both parameters k and s can be optimized to achieve the best possible value

of signal–to–noise ratio (SNR) (or of another computable performance index)

of the averaged trials. In order to avoid that the estimator becomes biased

it is necessary to estimate the parameters on a separate data set (“hold–

out” data set) different from that for which the SNR is computed. For the

results reported below in this paper the optimization was accomplished using
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the Nelder–Mead (Simplex) method of unconstrained nonlinear optimization

(Nelder and Mead, 1965). The Nelder–Mead method does not require the

objective function (such as SNR) to be differentiable. Therefore it is well–

suited to problems involving a non–differentiable objective function of a small

number of decision variables. Optimization of the new estimator involves the

function of only two variables. The Nelder–Mead (Simplex) method is usually

embedded in standard optimizing packages.

In order to address the small sample performance (which shows how the per-

formance of the estimator degrades when decreasing the number of available

data) (Gastwirth and Cohen, 1979) an experiment was carried out (see the

section 4 for description and results).

3 Experimental setup

Three healthy male subjects with normal hearing (age 28–40) participated in

the study. They seated in a chair in a dimly illuminated electrically shielded

room with closed eyes and were asked to be relaxed and listen to the sequence

of sound stimuli, namely 800 Hz (frequent) and 1200 Hz (rare) tones, do not

pay attention to frequent tones but press a button with right index finger as

soon as possible when they hear the rare high–pitch tone.

Stimuli were presented using Neuroscan (http://www.neuro.com) STIM sys-

tem binaurally through earplugs (Tubephone Insert Earphones ER-3 ABR,

by Etymotic Research http://www.etymotic.com) at 70 dB SPL. Each sound

stimulus was a pure sine wave with duration of 35 ms (first and last 5 ms were

linearly rising and falling). After a short practice session, experimental sessions
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(3 sessions for subjects 1 and 2, 2 sessions for subject 3) with breaks between

them were run, with 689 stimuli (both rare and frequent) presented in each

of them. Stimulus onset asynchrony (for both types of stimuli) was random

numbers uniformly distributed between 0.4 and 1.6 s. Rare tones were approx-

imately 10% of the total number of stimuli. The number of frequent stimuli

between rare stimuli was random, however, two constrains were set: stimulus

onset asynchrony between a rare stimulus and the next frequent stimuli could

not be below 1.2 s; and at least 3 frequent stimuli were placed between each

two random stimuli.

The EEG was recorded with Neuroscan Data Acquisition System (software

version 4.3.1, SynAmps 5083) from C3 and C4 electrodes referenced to elec-

trically linked earlobes. Amplifier gain was 1000, A/D bit size 12 (providing

the resolution of 0.084 µV/bit), amplitude range 5.5 mV, sampling rate 500

Hz, analog filter bandpass 0.1-70 Hz (slopes 12dB/octave), notch filter was

not used. Impedance was below 5 kΩ for subjects 1 and 2. For the subject 3

it was possible to achieve the impedance between 20 and 40 kΩ and the EEG

seemed to be slightly distorted, but no line noise was visible (this EEG was

used as an example of a recording of lower quality).

Only the data recorded from C4 electrode was used. Before segmenting into

epochs, the EEG was low–pass filtered (with zero phase shift, 96 dB/oct.

digital filter) below 30 Hz. For the analysis, ±500 ms epochs related to frequent

stimuli (not requiring the response) were extracted. The 16 frequent stimuli

from the beginning of each session up to 2nd such stimulus after the first

rare stimulus in the session and all frequent stimuli immediately following

any rare stimulus were not used in the further analysis. For a few cases of

missed or wrong responses (not related to rare stimulus), 2 frequent stimuli
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immediately preceding and 2 immediately following the related stimuli were

also excluded from the analysis. This resulted in 1787, 1796 and 1193 valid

epochs for subjects 1, 2 and 3, respectively (below: raw data). Some of these

epochs contained artifacts, such as electromyogram (EMG) or artifacts caused

by movements, but no clipped data.

A “cleaned” subset of the data was formed by rejecting all epochs in which the

amplitude in any time point (within the interval of ±500 ms relative to the

stimulus) exceeded a threshold of 50 µV. Visual inspection confirmed that the

majority of these epochs contained some artifacts and that no visible artifacts

(except, in rare cases, low amplitude EMG) were present in the remaining

epochs. The number of epochs in “cleaned” subsets was 1752, 1776 and 1104

for subjects 1, 2 and 3, respectively.

4 Results

Examples of averaged waveforms for all three subjects are given in Figure 2.

Median averaging produced more noisy averaged ERPs, which is more evident

in the prestimulus time interval (where, ideally, the averaged signal should be

close to zero). The difference between the other estimators is, however, not

clearly visible in these plots.

We estimated the efficiency of different averaging methods and different trim-

ming parameters by estimating SNR in randomly chosen subsets of epochs.

It is commonly assumed (e.g., Davila and Mobin (1992)) that signal is con-

tained in the poststimulus part of the averaged data, while noise is included

in both poststimulus and prestimulus part. Prestimulus variance usually was
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much lower than poststimulus variance in our data, thus the impact of noise

variance to poststimulus interval was insignificant and we considered the post-

stimulus part (approximately) as “signal”. The following formula was used,

therefore, for the calculation of signal–to–noise ratio:

SNR = 10 · log10

σ2
poststim.

σ2
prestim.

[dB] (7)

where σ2
poststim. is signal plus noise variance, defined as variance of the post-

stimulus interval (in our data, 2 – 400 ms relative to stimulus onset) of the

averaged ERP, and σ2
prestim. is “noise variance”, defined as variance of the

prestimulus interval (in our data, –400 – 0 ms relative to stimulus onset) of

the averaged ERP.

The SNR was estimated according to (7) for each subject after averaging, using

one of the location estimators, a subset of 31 epochs randomly drawn from the

whole “cleaned” set of epochs. The procedure was repeated 100 times and SNR

values were averaged (using the arithmetic mean). The results obtained for dif-

ferent estimators and different trimming parameters are presented in Figures

3(a–c). For two subjects (Figure 3(a) and 3(c)), mean averaging produced

better SNR not only comparing to median, but also comparing to trimmed

estimators almost for all values of trimming parameters. For one subject, best

SNR was obtained with trimmed estimators (Figure 3(b)).

The fact that mean performed better than any other estimator in two cases

can be related to the high homogeneity of our data, which could be the result

of the absence of strong artifacts, stable attention provided by the experi-

mental procedure and other factors. Results were similar for raw data sets
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(not shown in the figure) which contained only small number of epochs with

artifacts. To investigate effects of stronger inhomogeneity of the data, we sim-

ulated the alpha rhythm, an EEG component which often becomes a serious

problem for ERP averaging but was low in our recordings for all three sub-

jects. White noise (random normally distributed numbers) was generated and

filtered by Butterworth filter of 2nd order with the passband of 9–11 Hz. Ran-

domly selected non-overlapping intervals of this simulated signal were added

to randomly selected 20% of epochs of each subject’s cleaned data set after

multiplying by a constant computed for each epoch in such a way that the re-

sulted maximum of absolute amplitude of added “alpha rhythm” in the epoch

was 30 µV. This procedure resulted in the increase of data variance from 108

to 150 for subject 1, from 79 to 122 for subject 2 and from 172 to 212 for

subject 3 (computed for all epochs together). The procedure of estimating

the SNR described above was repeated for these new “alpha” data sets. The

results are presented in Figure 3(d-f). Now, 2 of 3 subjects had the best SNR

for the after a trimmed averaging procedure.

The worst results for all three subjects and both without and with adding

simulated alpha rhythm were found for median. In the case of subject 3 after

addition of the simulated alpha rhythm (Figure 3(d)) SNR was similar for

mean and median, but in this case trimmed estimators provided especially

prominent improvement of SNR.

It is possible that averaging using trimmed estimators can provide best results

if their parameters (trimming parameter for trimmed mean, Winsorized mean

and TL-mean, and parameters k and s for the tanh mean) are optimized for a

given type of data and/or given sample size. This is illustrated by the example

presented in Figure 4. One hundred randomly chosen epochs from subject 1
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(raw data set) were averaged using all location estimators discussed in this pa-

per after optimizing the parameters of trimming estimators using a separate

set of the same number of randomly chosen 100 epochs, and the SNR was es-

timated according to (7). Optimization was made using Nelder–Mead simplex

method of optimization (Bock, 1998) for the tanh estimator and by choosing

the parameter p which maximized the SNR for trimmed, Winsorized and TL-

mean. The procedure was repeated after successive removal of an increasing

number of randomly selected epochs. Averaged results for 100 repetition of

the above procedure are plotted in Figure 4. It was possible for every number

of removed epochs to obtain better SNR for trimmed estimators comparing

to median and mean (which cannot be optimized). The best performance, es-

pecially for smaller number of remaining epochs, was obtained for the tanh

mean. The relation between the slope parameter k of the tanh mean and the

value of the criterion to be maximized was also investigated. The results (not

presented in this paper) show that the global maximum is easily obtained for

the new estimator with small risk of stuck into local minima, due to applied

method of optimization (Bock, 1998).

5 Discussion

Robust trimmed estimators of data location gradually gain popularity in var-

ious statistical applications but have not been adopted for the ERP research

yet. The examples presented above demonstrate that trimmed estimators may

improve the results of averaging, the procedure which is crucial for ERP anal-

ysis. The evidence they provide for such improvement is preliminary due to

limited number of tests and subjects in the study. However, we can claim that
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if improvement of averaging of ERP is especially important, trimmed estima-

tors should be considered as a possible alternative to conventional averaging.

As alternatives to conventional averaging, weighted averaging and median av-

eraging were considered in the ERP literature so far. In the introduction, we

already argued that weighted averaging assumes quite unrealistic noise model.

Median averaging seems to be too robust estimator which may discard too

large part of information presented in the data. Trimmed estimators are more

robust than conventional mean but not as “over–robust” as median. Of course,

when artifacts are few or can be easily removed and data are very close to nor-

mal, there is no need to use other estimators than mean. But in many cases

when strong deviations from Gaussianity occurs (e.g., when a small number of

trials is averaged), averaging based on arithmetic mean can be not sufficient

and trimmed estimators become a reasonable choice. Additional opportuni-

ties to improve averaging are given by weighting of the amplitude values from

different epochs according to their rank, which is provided by TL-mean and

by tanh mean proposed in this paper. Note that this type of weighting inside

the averaging procedure is different from such procedure in usual weighted

averaging, which utilizes epoch (trial) characteristics rather than the ampli-

tudes only at the given time point; this is important for efficient processing

of highly nonstationary data. Trimming can be also understood in terms of

weighted averaging, as giving zero weight to extreme values (Figure 1 gives

an idea of how this viewpoint can be applied to all estimators studied in this

paper, including median and mean.). Because the trimming itself is evidently

a rather rough procedure, more advanced weighting, as in TL-mean and tanh

mean, can probably provide additional improvements of the results of aver-

aging. As our current results show, averaging using trimmed estimators may
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provide much smoother ERP waveforms than median averaging and at least

in some cases provide better SNR of ERP than both median and arithmetic

mean. However, no clear difference between trimmed mean, Winsorized and

TL-mean was found in the cases of the best choice of trimmed parameters for

each of them.

Optimization of the choice of the specific location estimator and its trimming

parameters or any other parameters can be done for each specific data set.

This procedure requires, of course, additional efforts and expertise. However,

if an increase of SNR is strongly desirable, it can be worthwhile at least to

compare the results of averaging with, for example, usual arithmetic mean,

trimmed mean (e.g., with trimming of 25% of data samples from each tail

of the distribution) and TL-mean (with a small trimming parameter). Note

that the trimming parameter in TL-mean and k and s for the tanh mean

influence not only trimming but also the weights of non-trimmed samples

(see (5), (4) and Figure 1). This fact explains why TL-mean’s dependence on

trimming parameter is quite different from such dependence for trimmed and

Winsorized mean (Figure 3). More precise optimization, which is especially

important in the case of tanh mean, can be done with Nelder–Mead (Simplex)

method of unconstrained nonlinear optimization (Nelder and Mead, 1965).

The parameter to be optimized should be chosen carefully according to the

objectives of the specific study (note that different approaches to estimation of

SNR in ERP exist; see, e.g., Hoke et al. (1984); Coppola et al. (1978); Davila

and Mobin (1992); Özdamar and Delgado (1996)). For unbiased optimization,

a separate set of data with characteristics similar to the analyzed data should

be used.

We considered in this paper only symmetrically trimmed estimators, because

19



they are appropriate for amplitude distributions without high asymmetry,

and amplitude distributions of non–averaged ERP data typically are not very

asymmetrical. Asymmetric trimmed mean estimators allowing different pro-

portion of trimming at lower and higher tails of the distribution (e.g., (Lee,

2003)) probably can be also applied for averaging of ERPs, especially for small

samples where the asymmetry of the distribution may be high.

Trimmed estimators are a class of robust estimators of data locations which

can help to improve averaging of ERPs when number of trials is small, the

data are highly nonstationary and include outliers. Their advantages can be

understood as a reasonable compromise between median which is very robust

but discard too much information and arithmetic mean conventionally used for

averaging which use all data but, due of this, is sensitive to outliers. Additional

improvement of averaging can be gained by introducing weighting of ordered

data, as in newly introduced TL-mean and tanh mean proposed in this paper.
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(c) Trimmed mean
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(d) Winsorized mean
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(e) TL-mean
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(f) Tanh mean

Fig. 1. Weights for the different location estimators. Data (N = 20) are sorted in as-

cending order. The arithmetic mean uses the same weight 1/N for all observations.

The median uses only the middle observation (odd number of observations) or the

two middle observations (even number of observations). Note that the scale is differ-

ent in figure (b). The trimmed mean applies a zero weight for extreme observations

and an equal weight for all other observations. The Winsorized mean concentrates

the weights of the ignored extreme observations to the last accepted data points.

The TL-mean applies higher weights for the middle observations, while the new

tanh mean applies smoothly changing weights to the values close to extreme. The

trimming parameters for the trimmed mean and the Winsorized mean are set in this

example to ignore two minimum and two maximum values. Trimming parameter in

TL-mean and parameters of tanh mean are set to ignore one minimum and one

maximum values.
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(a) subject 1
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(b) subject 2
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Fig. 2. Comparison of the averaged ERPs (100 trials, raw data) using the mean aver-

aging (black line), median averaging (green line), trimmed mean averaging (p = 25,

blue line) and tanh averaging (k = 0.1, s = 0, red line). The stimulus is presented

at zero time point. Median averaging enhanced strongly the noise. Some high fre-

quency low amplitude noise appeared also in trimmed mean average. Conventional

mean and tanh mean provided most smooth waveforms while tanh mean enhanced

N1 peak comparing to mean averaging.
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(a) subj. 1, alpha = 0% (b) subj. 1, alpha = 20%

(c) subj. 2, alpha = 0% (d) subj. 2, alpha = 20%

(e) subj. 3, alpha = 0% (f) subj. 3, alpha = 20%

Fig. 3. Comparison of SNR of the averaged ERPs using different averaging methods

(mean (dots), median (solid line), trimmed mean (circles), Winsorized mean (X’s)

and TL–mean (crosses)) and different values of trimming parameter p. SNR was

computed 100 times for averaged independent subsets of 31 epochs randomly drawn

from ”cleaned” data set. Horizontal lines shows the values obtained for mean and

median (correspond to lowest and highest possible p). alpha parameter shows the

percentage of epochs with artificially added “alpha rhythm” (see text for details).
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Fig. 4. Small sample performance of the estimators. SNR was estimated for averaged

100 epochs which were randomly chosen from subject 1 raw data set and for averaged

epochs remained after randomly removing increasing number of epochs. Parameters

of trimmed estimators were optimized using independent sets of the same number

of randomly chosen epochs (see details in the text). SNR was averaged for 100

repetitions of the procedure. Note that in the case of tanh mean 2 parameters were

optimized instead of 1 parameter in three other trimmed estimators, while mean

and median have no parameters which could be optimized; this could at least partly

contribute to SNR variations amongst the estimators.
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